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We consider the Floquet linear problem giving the threshold acceleration for the
appearance of Faraday waves in large-aspect-ratio containers, without further re-
strictions on the values of the parameters. We classify all distinguished limits for
varying values of the various parameters and simplify the exact problem in each limit.
The resulting simplified problems either admit closed-form solutions or are solved
numerically by the well-known method introduced by Kumar & Tuckerman (1994).
Some comparisons are made with (a) the numerical solution of the original exact
problem, (b) some ad hoc approximations in the literature, and (c) some experimental
results.

1. Introduction and formulation
Faraday waves (Faraday 1831) are gravity–capillary waves excited parametrically

by vertical vibration of the container. In addition to their intrinsic interest in fluid
mechanics, these waves are considered today a prototype of a pattern forming system.
The most interesting spatio-temporal behaviours are associated with nonlinearity
(Miles & Henderson 1990; Fauve 1995), especially in large-aspect-ratio containers
(Kudrolli & Gollub 1996), but unfortunately a complete, consistent weakly nonlinear
theory for these waves is still lacking today, and some gaps still remain at the
linear level. Among the still unresolved questions, linear damping is not completely
understood for low viscosity at moderate aspect ratio, even if the effects of contact
line dynamics and surface contamination are eliminated (Henderson & Miles 1994;
Martel, Nicolás & Vega 1998; Howell et al. 2000). The theoretical and experimental
determination of the instability threshold has received considerable attention, both
in the moderate (Henderson & Miles 1990; Jiang et al. 1996) and large (Douady
1990; Edwards & Fauve 1994; Kumar & Tuckerman 1994; Bechhoefer et al. 1995;
Christiansen, Alstrom & Levinsen 1995; Kumar 1996; Lioubashevski, Fineberg &
Tuckerman 1997) aspect-ratio limits. In particular, if lateral walls are ignored the
instability threshold is reliably calculated for arbitrary viscosity by a numerically
cheap method (Kumar & Tuckerman 1994). But even in this simple case, a systematic
asymptotic analysis of the several distinguished limits or regimes, to identify the
relevant non-dimensional parameters in each case, is lacking. That analysis is the
main object of this paper.

In order to formulate the problem we consider a wide cylindrical container,
which is vertically vibrated with an amplitude a∗ and frequency ω∗. We attach
the reference frame to the container (figure 1) and non-dimensionalize space and
time with the unperturbed height of the liquid h and the gravity–capillary time
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Figure 1. Sketch of the fluid domain.

t∗cg = [g/h+ σ/(ρh3)]−1/2, where g is the gravitational acceleration and σ is the coef-
ficient of surface tension. In addition, we linearize both the momentum equation and
the boundary conditions around the quiescent state, to obtain

∇ · u+ wz = 0, (1.1)

ut = −∇p+ Cg(∆u+ uzz), wt = −pz + Cg(∆w + wzz), (1.2)

u = 0, w = 0 at z = −1 and at (x, y) in Γ , (1.3)

w = ft, uz + ∇w = 0 at z = 0, (1.4)

p− (1− S)f + S∆f − 2Cgwz + aω2f cos(ωt) = 0 at z = 0, (1.5)

f = 0 or ft = D∇f · n at Γ , (1.6)∫
Σ

f dx dy = 0 at t = 0, (1.7)

where the boundary condition (1.6) depends on the attachment mode of the contact
line (either pinned end or dynamical contact angle, with D a phenomenological
constant, see Hocking 1987; Henderson & Miles 1994 and references therein). In
the above equations u and w are the horizontal and vertical components of the
velocity, p is the pressure, f is the vertical deflection of the free surface, ∇, ∇·
and ∆ are the horizontal gradient, divergence and Laplacian operators, and Σ is
the cross-section of the container; Γ is the boundary of Σ and the vector n is
the (horizontal) outward unit normal to Γ . The system is vibrating harmonically,
with non-dimensional amplitude a = a∗/h and frequency ω = 2πω∗t∗cg . In addition,

the problem depends on the capillary–gravity number Cg = ν/[gh3 + σh/ρ]1/2 and the
gravity–capillary balance parameter S = σ/(σ + ρgh2), where ρ is the density and ν
is the kinematic viscosity. Cg is the ratio of the capillary–gravity time to the viscous
time, and is small most frequently in practice. Cg and S are related to the Ohnesorge
number C = ν[ρ/σh]1/2 and the Bond number B = ρgh2/σ as Cg = C/(1 +B)1/2 and
S = 1/(1 + B). Thus 0 6 S 6 1, and the extreme values S = 0 and 1 correspond to
the purely gravitational (σ = 0) and the purely capillary (g = 0) limits, respectively.

If the wavelength is sufficiently small compared to the aspect ratio (see § 5 below),
we may ignore the lateral walls and reduce the stability problem (1.1)–(1.5) to the
analysis of its normal modes, which are of the form

(u, w, p, f ) = (U ,W , P , F) exp[i(k1x+ k2y)], (1.8)

in terms of the horizontal wavevector components k1 and k2. Substitution of these
expressions into (1.1)–(1.5) and elimination of U yields

Pzz = k2P , Wt = −Pz + Cg(Wzz − k2W ), (1.9)

W = Wz = 0 at z = −1, (1.10)
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Figure 2. Representative neutral instability curves of (2.3)–(2.6) associated with sub-harmonic (S)
and harmonic (H) perturbations. Cg = 1, S = 0.5 and (a) ω̃ = 2, (b) ω̃ = 1.5.

W − Ft = Wzz + k2W = 0 at z = 0, (1.11)

P − (1− S + Sk2)F − 2CgWz + aω2F cos(ωt) = 0 at z = 0, (1.12)

where k =
√
k2

1 + k2
2 is the wavenumber of the mode. The calculation of the instability

threshold ac requires determination those Floquet exponents of (1.9)–(1.12) that are
purely imaginary; in fact, in all cases considered in this paper these exponents
are found to be either 0 or iπ, which correspond to real Floquet multipliers 1
or −1 respectively. For fixed values of the remaining parameters, this determines
a sequence of tongues like that in figure 2, whose minimum yields ac; this is so
because the flat solution is stable at a = 0. Using the method introduced by Kumar
& Tuckerman (1994), the numerical calculation of the Floquet exponents is fairly
cheap, even for extreme values of the parameters (see the Appendix). But, without
further simplifications, ac depends on three parameters: ω, Cg and S . Fortunately,
these are usually large/small, and the number of parameters can be reduced under
appropriate re-scaling and/or asymptotic analysis. We shall be mainly concerned with
the distinguished limits, namely those limits in which the equations include as many
terms as possible once a basic assumption is made. These limits are:

A. Nearly inviscid limits. If

Cg � 1, Cg � 1− S + ω and C1/2
g ω3/2 � 1− S + Sω/Cg, (1.13)

then the most dangerous mode at threshold is potential, except in two thin boundary
layers near the bottom wall and the free surface, and an approximation of ac can
be found in closed form. As in the viscous limit below, several sub-limits can be
distinguished, depending on the ratio of the container depth to the wavelength
of the eigenmodes, and on whether the eigenmodes are monochromatic in first
approximation or not.

B. Viscous limits. If (1.13) does not hold, then the most dangerous mode at threshold
exhibits non-localized vorticity due to viscous effects. Two sub-limits are considered,
depending on which condition (1.13) fails.
B.1. Moderate and long waves. Now the most dangerous mode at threshold exhibits
a bounded wavenumber and thus it affects the whole fluid field, down to the bottom
of the container. We shall consider three cases.
B.1.1. Basic limit and highly viscous sub-limit. This is the most general limit, which is
captured as

C−1
g = O(1) and ω ∼ Cg, (1.14)
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and includes as sub-limits the remaining limits considered below. As usual, O denotes
hereinafter the Landau O-symbol, namely ψ = O(φ) means that either ψ � φ or
ψ ∼ φ. If (1.14) holds with Cg � 1 then viscous effects dominate gravity and surface
tension, which can both be ignored in (1.12).
B.1.2. Long-wave limit. This limit applies if Cg � 1 and (1.13b) fails, namely if

Cg � 1, 1− S = O(Cg) and ω = O(Cg). (1.15)

The wavenumber of the most dangerous mode is small and we can neglect those
terms proportional to k2 in (1.9) and (1.11), and neglect the term proportional to Cg
in (1.12).
B.1.3. Small-frequency limit. This is a sub-limit of the limits A, B.1.1 and B.1.2, and
applies when

C−1
g = O(1) and ω � Cg, or Cg � 1, 1− S = O(Cg) and ω � Cg. (1.16)

The most dangerous mode at threshold oscillates on a time scale much shorter than
ω−1 and can be calculated by a WKB approximation.
B.2. Short waves. This limit applies when the wavelength of the most dangerous mode
is small compared to depth. It occurs when either Cg � 1 and (1.13c) fails, or Cg is
at least of order unity and ω � Cg , namely

Cg � 1 and 1− S + Sω/Cg = O(C1/2
g ω3/2), or ω−1 � C−1

g = O(1). (1.17)

Now the most dangerous mode at threshold only affects a thin layer of thickness
O(k−1) near the free surface.

Note that if (1.13) does not hold then one of the conditions (1.14)–(1.17) holds.
Thus the classification above covers all possible values of the parameters, including
some that are somewhat unlikely in practice but are also considered for the sake of
completeness.

With these ideas in mind, the paper is organized as follows. The viscous and nearly
inviscid limits will be analysed in § 2 and § 3, respectively. The results of this analysis
will be compared in § 4 with some previous approximations in the literature. The
effect of distant sidewalls and a comparison with experimental results in the literature
will be made in § 5 and § 6 respectively. Some concluding remarks will be made in § 7.

2. Viscous limits
These limits apply if (1.13) does not hold.

2.1. Moderate and long waves

Now the wavelength of the most dangerous mode at threshold is either of the order
of the height of the container or larger. Three distinguished limits are considered.

2.1.1. Basic limit and highly viscous sub-limit

Let us assume that

ω−1 ∼ C−1
g = O(1), (2.1)

with S arbitrary. This is the most general limit and leads to no simplification in
(1.9)–(1.12). For convenience we introduce the re-scaling

P̃ = P/Cg, F̃ = CgF, t̃ = Cgt, ω̃ = ω/Cg, (2.2)
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which corresponds to non-dimensionalizing time with the viscous time h2/ν. Equations
(1.9)–(1.12) are rewritten as

P̃zz = k2P̃ , Wt̃ = −P̃z +Wzz − k2W, (2.3)

W = Wz = 0 at z = −1, (2.4)

W − F̃ t̃ = Wzz + k2W = 0, (2.5)

P̃ − (1− S + Sk2)F̃/C2
g − 2Wz + aω̃2F̃ cos(ω̃t̃ ) = 0 at z = 0. (2.6)

For fixed values of Cg , ω̃ and S , this problem can be solved as indicated in the
Appendix, to obtain marginal instability curves for harmonic and sub-harmonic
perturbations (1 and −1 Floquet multipliers) that are like the resonance tongues in
figure 2, where the minimum is indicated and provides the threshold amplitude, which
corresponds to a sub-harmonic perturbation for ω̃ = 2 and to a harmonic one for
ω̃ = 1.5. When ω̃ is varied, the solid curves in figure 3 are obtained. As Cg → ∞ the
instability threshold becomes independent of both gravity and surface tension (see
(2.6)). Thus the curve labelled Cg = ∞ in figure 3(d ) is independent of S; this curve
gives a quite good approximation for Cg only moderately large (e.g. for Cg = 2 the
curve would be indistinguishable from that for Cg = ∞). Note that for ω̃ > ω̃0 (∼ 2
if Cg > 0.5) the threshold ac is attained at the first (from the left) resonance tongue in
figure 2, which corresponds to a sub-harmonic instability. And as ω is decreased the
whole group of resonance tongues in figure 2 rolls clockwise (in addition to moving
up) in such a way that the minimum changes to a higher-order tongue, and the
instability alternately changes from sub-harmonic to harmonic and vice versa (at the
points indicated with circles in figure 3). As ω̃ → 0 the eigenmodes exhibit oscillations
on the time scale t̃ ∼ 1 but a much larger period, of the order of ω̃−1; in this limit the
curves (a), (c) and (d ) in figure 3 match with the asymptotic results in § 2.1.3 obtained
by the WKB method and

acω̃
2 → Ãc as ω̃ → 0, (2.7)

where the constant Ãc is plotted vs. S (for the indicated values of Cg) in figure 5(b)
below. On the other hand we have the asymptotic behaviour, which is obtained below
in § 2.2;

acω̃
1/2 → Ãc2 ' 1.672 as ω̃ →∞. (2.8)

2.1.2. Long-wave limit

Now the wavelength of the most dangerous mode is small, and requires that
viscosity, gravity and the forcing frequency be correspondingly small, namely

Cg � 1, 1− S = O(Cg) and ω = O(Cg). (2.9)

The distinguished limit is 1− S ∼ k2 ∼ ω ∼ a−1 ∼ Cg � 1, and leads to the scaling

P̃1 = (1− S + Cg)P , W̃ = CgW, F̃1 = C2
gF,

k̃ = k/(1− S + Cg)
1/2, γ = (1− S)/Cg, ã = Cga,

}
(2.10)

with t̃ = Cgt and ω̃ = ω/Cg as in § 2.1.1, and to the following approximation of
(1.9)–(1.12):

P̃1 = constant, W̃zt̃ = −k̃2P̃1 + W̃zzz, (2.11)

W̃ = W̃z = 0 at z = −1, (2.12)
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Figure 3. Basic and highly viscous limits. Instability threshold acceleration of (2.3)–(2.6),
acω̃

2 ≡ a∗ch3(2πω∗)2/ν2 in terms of ω̃ ≡ 2πω∗h2/ν, for (a, b) Cg = 0.1, (c) Cg = 0.5, (d ) Cg = 1,∞,
and the indicated values of S . Exact (——–), two-term approximation in (A 9) (− − − −), Cerda
& Tirapegui (1998) approximation (– · – · –), WKB approximation from the Mathieu equation (4.3)
(· · · · · ·), and asymptotic behaviours as ω̃ → 0,∞ (— —).

W̃−F̃1t̃ = W̃zz = P̃1/(γ+1)−[γ+(γ+1)k̃2− ãω̃2 cos ω̃t̃ ]F̃1 = 0 at z = 0. (2.13)

This problem depends on k̃, ω̃, ã and γ and, when solved as indicated in the
Appendix, provides the instability threshold ãcω̃

2 plotted vs. ω̃ in figure 4 for several
representative values of γ. As in § 2.1.1, the instability is sub-harmonic for sufficiently
large ω̃ and changes alternately from sub-harmonic to harmonic and vice versa (at
the points indicated with circles) as ω̃ is decreased. The asymptotic behaviours

ãcω̃
2 → Ãc1 as ω̃ → 0 and ãcω̃

3/2 → 1 as ω̃ →∞ (2.14)

are plotted with dashed lines, as obtained in § 2.2 and § 3.1 below; Ãc1/(γ + 1) is
plotted vs. γ/(γ + 1) in figure 5(d ) below.

2.1.3. Small-frequency limit

This limit applies whenever the forcing frequency is sufficiently small. It is a
sub-limit of the limits considered above, in § 2.1.1 and § 2.1.2, and applies when either

C−1
g = O(1) and ω � Cg, (2.15)

or

1− S = O(Cg) and ω � Cg � 1. (2.16)
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In the limit (2.15) we apply a WKB approximation. We re-scale t̃ and a as

τ = ω̃t̃, Ã = aω̃2, (2.17)

where ω̃ = ω/Cg as above, and then seek solutions of (2.3)–(2.6) of the form

(W, P̃ , F̃) = (W0(z, τ), P̃0(z, τ), F̃0(τ)) exp

[
ω̃−1

∫ τ

0

λ̃(σ) dσ

]
+ c.c.+ · · · (2.18)

as ω̃ → 0, where c.c. stands for the complex conjugate. When this ansatz and (2.17)
are placed into (2.3)–(2.6) and higher-order terms are neglected, we obtain

P̃0zz = k2P̃0, λ̃W0 = −P̃0z +W0zz − k2W0, (2.19)

W0 = W0z = 0 at z = −1, (2.20)

W0 − λ̃F̃0 = W0zz + k2W0 = 0 at z = 0, (2.21)

P̃0 − (1− S + Sk2)F̃0/C
2
g + ÃF̃0 cos τ− 2W0z = 0 at z = 0, (2.22)

where the slow time variable τ acts as a parameter and λ̃(τ) is defined as that
eigenvalue with largest real part; this is numerically calculated from the dispersion
relation of (2.19)–(2.22), which is A0(λ̃, τ) = 0, where A0 is the right-hand side of
(A 3) in the Appendix, after setting n = 0 and subtracting Ã cos τ. As usual in the
WKB method (Bender & Orszag 1978; Wasow 1987), the associated approximation
of the time derivatives breaks down at the turning points, which correspond to the
multiple eigenvalues of (2.19)–(2.22); but this failure does not affect our leading-order
approximation. Now, according to (2.18), the marginally unstable points are given by

Re

(∫ 2π

0

λ̃(τ) dτ

)
= 0, (2.23)

where Re stands for the real part. This equation provides the marginal instability
value of Ã, which is shown as a thick line in figure 5(a). For comparison, the exact
marginal instability curves for ω̃ = 0.3 are also plotted. Note that the approximation
is reasonably good near the minimum, even for this not-so-small value of ω̃, but it
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Figure 5. Small-frequency sub-limit. (a) Marginal instability curve for Cg = 1, S = 0.5; asymptotic
results as ω̃ → 0 calculated from (2.23) (thick line) and exact results calculated from (2.3)–(2.6) for
ω̃ = 0.3 (thin lines). (b) Asymptotic (as ω̃ → 0) instability threshold acceleration in terms of S , as
calculated from (2.23) for the indicated values of Cg . (c) Asymptotic as ω̃ → 0 (− − −) and exact
for ω̃ = 0.3 (——) eigenfunction for kc = 0.83, Cg = 1, S = 0.5, Ac = 55. (d ) Asymptotic (as ω̃ → 0)
threshold acceleration in the long-wave limit (2.11)–(2.13).

does not distinguish between harmonic and sub-harmonic perturbations; this would
require consideration of higher-order terms and analysis of the turning points. The
instability threshold acceleration Ãc is readily obtained as that value of Ã where the
plot in figure 5(a) attains its minimum, at k = kc ' 0.83. For other parameter values
we obtain Ãc in terms of Cg and S , as plotted in figure 5(b). The corresponding

eigenfunction F̃(τ) = F̃0(τ) exp[ω̃−1
∫ τ

0
λ̃(σ) dσ] + c.c. (see (2.18)) at threshold, k = kc,

is plotted in figure 5(c), and compared with the exact eigenfunction at ω̃ = 0.3; once
again the comparison is reasonably good.

In the limit (2.16) we must consider the WKB approximation of (2.11)–(2.13) as
ω̃ → 0. As above, the instability threshold in this limit is obtained from equation (2.23),
where λ̃(τ) is that eigenvalue with largest real part of the problem obtained by substi-
tuting τ = ω̃t̃, Ã = ãω̃2 and (W,P , F̃) = (W0(z, τ), P0(z, τ), F̃0(τ)) exp[ω̃−1

∫ τ
0
λ̃(σ) dσ]+

c.c. + · · · in (2.11)–(2.13), and neglecting higher-order terms as ω̃ → 0. For the sake
of brevity we do not give explicitly here this linear eigenvalue problem, but it yields

ãcω̃
2 → Ãc1 as ω̃ → 0, (2.24)

where the constant Ãc1/(γ + 1) is plotted vs. γ/(γ + 1) in figure 5(d ).
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2.2. Short waves

This limit applies when either

C−1
g = O(1) and ω � Cg, (2.25)

or

Cg � 1 and ω � 1. (2.26)

Under either of these conditions, the most dangerous wavenumber is large and the
associated eigenmode is such that the velocity vanishes except in a thin layer attached
to the free surface, whose thickness is of the order of the wavelength (i.e. small as
compared to the height of the container, which is 1).

If (2.25) holds then the distinguished limit is

ω ∼ k2 ∼ a−2 � 1, Cg ∼ 1. (2.27)

Using the scaling

P̂ = C
−1/2
g ω−1/2P , F̂ = ωF, η = C

−1/2
g ω1/2z, τ = ωt,

k̂ = C
1/2
g ω−1/2k, Â = C

−1/2
g ω1/2a,

}
(2.28)

(1.10)–(1.12) are rewritten in this layer as

P̂ ηη = k̂2P̂ , Wτ = −P̂ η +Wηη − k̂2W, (2.29)

W = 0 at η = −∞, (2.30)

W − F̂τ = Wηη + k̂2W = 0 at η = 0, (2.31)

P̂ − 2Wη + ÂF̂ cos τ = 0 at η = 0. (2.32)

Note that this problem is independent of both gravity and surface tension, which
are dominated in (2.32) by viscous effects. Thus this limit can also be obtained as a
sub-limit (as ω̃ → ∞) of the highly viscous limit considered in § 2.1.1. The problem

depends only on k̂ and Â, and when solved as indicated in the Appendix yields the
instability threshold Âc = Ãc2 ' 1.672, which provides the asymptotic behaviour (2.8).

If (2.26) holds then the distinguished limit is

ω2 ∼ k ∼ C−2/3
g ∼ S−1/2 ∼ a−1 � 1 (2.33)

and leads to the scaling defined by (2.28) and

ω̂ = C3
gω/(S + C4/3

g )2, Ŝ = C−4/3
g S . (2.34)

Using these, (1.9)–(1.11) are rewritten as given by (2.29)–(2.31), and (1.12) becomes

P̂ − [(1 + Ŝ )−3ω̂−3/2 + (1 + Ŝ )−1ω̂−1/2Ŝ k̂2]F̂ − 2Wη + ÂF̂ cos τ = 0 at η = 0.

(2.35)

As above, this problem is solved numerically (see the Appendix) to obtain the Faraday
stability threshold acceleration Âc plotted vs. ω̂ in figure 6(a). Note that as ω̂ increases

all curves approach that labelled Ŝ = ∞, which corresponds to neglecting gravity and
replacing (2.35) by

P̂ − ω̂−1/2k̂2F̂ − 2Wη + ÂF̂ cos τ = 0 at η = 0. (2.36)

Now, we must distinguish two cases. (i) If Ŝ = O(1) the validity of (2.36) requires that

(1 + Ŝ )3ω̂3/2 ≡ C1/2
g ω3/2 � 1, (2.37)
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(2.35) for Ŝ = 500 (——); asymptotic behaviours as ω̂2Ŝ
9/2 → 0,∞ (— —).

as obtained by comparing those terms accounting for gravitational and viscous effects
in (2.35). Similarly, capillary effects are small compared to viscous effects provided
that

(1 + Ŝ )ω̂1/2/Ŝ ≡ C3/2
g ω1/2/S � 1. (2.38)

(ii) If instead Ŝ � 1 then gravity can be neglected for ω̂ � 1. In this limit, (3.19)
below holds, the short-wave limit of the nearly inviscid regime (§ 3.1.1 below) applies,
and according to (3.20) below and the scaling (2.34), the threshold curve is given by

ω̂2Ŝ
9/2

= ω̂1/2Ŝ
3/2
Âc[1 + (ω̂1/2Ŝ

3/2
Âc)

2/16], (2.39)

to a first approximation; in fact this approximation applies whenever ω̂ � 1, without
the need for Ŝ being large. This approximate expression is plotted in figure 6(b), where
it is also compared with the ‘exact’ curve for Ŝ = 500, and yields two asymptotic

behaviours, as ω̂2Ŝ
9/2 � 1 and as ω̂2Ŝ

9/2 � 1, which become apparent in the curve
labelled Ŝ = 100 in figure 6(a).

The asymptotic behaviours as ω̂ → 0 and ω̂ → ∞ are also plotted in figure 6(a).
According to our comments above, the former is given by

Âc = 2(4ω̂)1/6 + · · · if Ŝ = ∞, Âc = Ŝ
3
ω̂3/2 + · · · if Ŝ < ∞. (2.40)

In the limit ω̂ →∞, when both (2.37) and (2.38) hold, (2.35) reduces to (2.32) and thus
we have the asymptotic behaviour Âc → Ãc2 (' 1.672) as ω̂ → ∞, which coincides
with both the asymptotic behaviour (2.8) and the related result above in the limit
(2.25).

3. Nearly inviscid limits
In these limits viscous effects can be ignored except in two boundary layers attached

to the bottom wall and the free surface. This requires that (see below)

Cg � 1, Cg � 1− S + ω and C1/2
g ω3/2 � 1− S + Sω/Cg. (3.1)
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If we tried to obtain the whole marginal instability curve in this regime then we
would obtain a non-local Mathieu equation similar to those considered by Beyer &
Friedrich (1995) and Müller et al. (1997). But for most values of the parameters in
this regime, namely whenever (cf. (3.1))

Cg � 1, Cg � ω and C1/2
g ω3/2 � 1− S + Sω/Cg, (3.2)

the eigenfunction at threshold is monochromatic to a first approximation and the
instability threshold is given by a standard Mathieu equation. This case will be treated
in §3.1. If instead (3.1) holds but (3.2) does not, which occurs if

Cg � 1, ω = O(Cg) and Cg � 1− S, (3.3)

then the eigenfunction at threshold is not monochromatic but the WKB method
applies.

3.1. Monochromatic eigenfunctions

In the limit (3.2) the free-surface deflection F is given by

F ′′ + 2δF ′ + [Ω2 − 2Ωd+ 2d2 − akω2 tanh k cos(ωt)]F = 0, (3.4)

where the damping rate δ, the inviscid eigenfrequency Ω and the viscous detuning d
are

δ =
k(Ω/2)1/2

sinh 2k
C1/2
g +

[
2k2 +

(1 + tanh2 k)k2

4 sinh2 k

]
Cg + · · · , (3.5)

Ω = [k tanh k(1− S + Sk2)]1/2, d =
k(Ω/2)1/2

sinh 2k
C1/2
g + · · · . (3.6)

Note that the second term in the expansion (3.5) is essential as soon as k is large.
The two-term approximation of the damping rate (3.5) is quite good in the whole
range (3.2) (Martel & Knobloch 1997). Note that there is a discrepancy between the
coefficient of Cg in (3.5) and its counterpart calculated by Martel & Knobloch, which
comes from a gap in their calculation (Knobloch, Martel & Vega 2002). But this term
can be in fact neglected, to obtain the following well-known approximation:

δ ' k[(1− S + Sk2)k tanh k]1/4C1/2
g /(21/2 sinh 2k) + 2k2Cg, (3.7)

which is uniformly valid in the limit (3.2). Of course we could proceed with higher-
order terms in (3.5), but their calculation is increasingly tedious and only provides

small corrections (the next O(C
3/2
g )-term yields a 15% correction at Cg ' 0.1, Müller et

al. 1997). Equation (3.4) could be obtained quite directly by adding viscous dissipation
to the standard inviscid Mathieu equation (Kumar & Tuckerman 1994). But for
convenience we explain how (3.4) (with δ approximated as in (3.7)) is derived from first
principles and where its validity limits (3.2) come from. We consider the distinguished
limit Cg � 1, ω ∼ 1, in which the solutions of (1.9)–(1.12) exhibit two thin boundary

layers, with thicknesses O(C
1/2
g ), near the bottom plate and the free surface. Outside

these layers, in the bulk, (1.9)–(1.12) can be replaced by

Pzz = k2P , Wt = −Pz, (3.8)

W = [Cg/(2Ω)]1/2(Wzt/Ω −Wz) at z = −1, (3.9)

W − Ft = −2k2CgF at z = 0, (3.10)

P − (1− S + Sk2)F − 2CgWz + aω2F cos(ωt) = 0 at z = 0, (3.11)
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to the approximation relevant here, where we have taken into account that vorticity
vanishes to all orders in the bulk; the boundary conditions are obtained from matching
conditions between the solution in the boundary layers and that in the bulk. The
assumption above that the solution be monochromatic is essential to obtain the
solution in the boundary layer attached to the bottom plate in closed form.

Since Cg � 1, we seek the expansions

(P ,W ) = (P0,W0) + C1/2
g (P1,W1) + Cg(P2,W2) + · · · , (3.12)

and introduce the ansatz

F ′′ = −[L0(F) + C1/2
g L1(F) + CgL2(F) + · · ·], (3.13)

where, for j = 0, 1, 2, Lj are linear operators acting on the free-surface deflection F .
Substituting (3.12)–(3.13) into (3.8)–(3.11) we obtain, at leading order,

W0 = F ′ sinh[k(z + 1)]/ sinh k, P0 = −F ′′ cosh[k(z + 1)]/(k sinh k),

L0(F) = k tanh k[1− S + Sk2 − aω2 cos(ωt)]F,

}
(3.14)

where the third expression comes from a standard solvability condition. Similarly, at

O(C
1/2
g ) and O(Cg) we obtain

L1(F) = k(2Ω)1/2(F ′ − ΩF)/ sinh 2k,

L2(F) = 4k2F ′ + O(k2F ′ + d2F)/ sinh2 k

}
(3.15)

and, according to (3.13), the Mathieu equation (3.4) follows. When looking at the
ingredients in this derivation, we obtain the validity limits (3.2) by anticipating that
ω ∼ Ω and requiring that the thicknesses of the boundary layers, O(Cg/ω)1/2, be
small compared to either (i) the height of the container if ω is bounded or (ii) the
penetration depth of the waves, k−1, if ω is large.

Now since δ � 1, the stability analysis of (3.4) is standard. The most dangerous
mode is the sub-harmonic (and monochromatic, as anticipated above) one with a
frequency Ω ' ω/2, which corresponds to a first resonance tongue and gives ac ∼ δ;
the remaining tongues are associated with modes exhibiting frequencies mω/2 and
yield a ∼ δ1/m (� δ) for each integer m > 2 (Bender & Orszag 1978), and thus they
never provide the instability threshold. For fixed values of ω, Cg (� 1) and S , the
first resonance tongue corresponds to values of the wavenumber k such that Ω(k) is
close to ω/2, and the marginal instability curve (a vs. k) of (3.4) is given by

(ωk tanh k)a/δ = 2[1 + (Ω − ω/2− d)2/δ2]1/2 (3.16)

to the approximation relevant here. As the wavelength is (slightly) varied, this condi-
tion provides the hyperbola plotted as a solid line in figure 7(a), whose minimum is
attained at Ω = ω/2 + d and leads to the threshold amplitude for Faraday instability,
which is

ac = 2δ/(ωk tanh k) ' (coth2 k − 1)C1/2
g /(2ω1/2) + 4k coth kCg/ω, (3.17)

where the approximation (3.7) has been used and the wavenumber k is given by
(recall that Ω ' ω/2 and see (3.6a))

(1− S + Sk2)k tanh k = ω2/4. (3.18)

The approximation (3.17) is plotted with dashed lines in figure 7(b, c) for Cg = 10−2.
Note that the approximation is good provided that ω is neither too small nor too large,
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Figure 7. Instability threshold in the nearly inviscid regime. (a) Marginal instability curves;
asymptotic result from (3.16) (——), and exact result from (1.9)–(1.12) for Cg = 10−2, ω = 1 and:
S = 0 (− − −), S = 0.5 (− · − · −) and S = 1 (· · · · · ·). (b, c) Instability threshold acceleration
in terms of ω for the indicated values of S; asymptotic result from (3.17) (− − −), exact result
from (1.9)–(1.12) for Cg = 10−2 (——); asymptotic behaviours from (3.20) and (3.24) (— —),
and long-wave approximation from (2.11)–(2.13) (· · · · · ·). (d ) Approximation (3.23) (——–) and
asymptotic behaviours for small and large ω/(1− S) (— —).

according to (3.2). In addition, the exact value of ac and its asymptotic behaviour (as
ω → 0 and ω →∞) are plotted for comparison. These asymptotic behaviours deserve
some attention.

Nearly inviscid short waves

If

1� ω and C1/2
g ω3/2 � 1− S + Sω/Cg, (3.19)

then k is large at threshold (see (3.18)) and (3.17)–(3.18) become ac = 4kCg/ω and
(1− S + Sk2)k = ω2/4 to a first approximation, or

ω2S1/2 = (ωS1/2ac/Cg)[1 + (ωS1/2ac/Cg)
2/16]. (3.20)

This expression is readily obtained in the distinguished limit Sk2 ∼ 1 (which requires
that S be small), but also applies as either Sk2 → 0 or Sk2 →∞, as is readily seen. It
matches with the short-wave limit considered in § 2.2, as anticipated there.
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Nearly inviscid long waves

If

Cg � ω � 1, (3.21)

then the wavenumber k is small (see (3.18)) and, to a first approximation, (3.17)–(3.18)
become

ac = C1/2
g /(2ω1/2k2) and (1− S + Sk2)k2 = ω2/4, (3.22)

which can be simplified to

acω
1/2(1− S)/C1/2

g = (1− S)2/ω2 + [(1− S)4/ω4 + (1− S)2/ω2]1/2. (3.23)

In order to obtain this we only need to consider the distinguished limit 1− S ∼ k2

(which requires that 1− S be small) in (3.22) and check that the approximation also
holds as 1− S � k2 and as 1− S � k2. This approximation yields the threshold curve
plotted in figure 7(d ), where the asymptotic behaviours are

acω
3/2C−1/2

g → 1 as ω/(1− S)→∞, (3.24)

acω
5/2C−1/2

g (1− S)−1 → 2 as ω/(1− S)→ 0. (3.25)

Asymptotic behaviour (3.25) matches either with the long-wave limit considered in
§ 2.1.2 (see (2.14b)) if 1− S = O(Cg), or with the non-monochromatic case considered
next if 1− S � Cg .

3.2. Non-monochromatic eigenfunctions

In the limit (3.3) the eigenfunctions at threshold are not monochromatic and oscillate
on a characteristic time much shorter than the forcing period 2π/ω. As in § 2.1.3,
those eigenfunctions and the instability threshold are readily calculated by the WKB
method, which in the limit (3.3) leads to closed-form expressions as follows. As in the
approximation implicit in (3.6), (3.7), the eigenvalue of (2.19)–(2.22) is given by

Cgλ̃(τ) = [(aω2 cos τ− 1 + S − Sk2)k tanh k]1/2

−[(aω2 cos τ− 1 + S − Sk2)k tanh k]1/4kC1/2
g /(21/2 sinh 2k)− 2k2Cg + · · ·

(3.26)

which applies in the limit (3.3) provided that, in addition Im λ̃� |Re λ̃|, where Re and

Im stand for the real and the imaginary parts. This requires in particular that λ̃ be
not real. Thus invoking (2.23) and (3.26), and anticipating that Sk2 � 1 at marginal
instability we have

aω2 = 1− S + A, with |A| � 1, (3.27)

we obtain the following approximation for A:

I1(1− S)−1/2(A− Sk2)(k tanh k)1/2

= I2[(1− S)k tanh k]1/4kC1/2
g /[2 sinh(2k)] + 4πk2Cg + · · · , (3.28)

where

I1 =
√

2

∫ 1

0

(1− ξ2)1/2 dξ = π/23/2

I2 =

∫ 2π

0

(1− cos τ)1/4 dτ = 25/4B(3/4, 1/2) ' 5.70,
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Figure 8. Marginal instability curves for Cg = 10−2, S = 0.5 and ω = 0.01: ——, exact solution
from (2.3)–(2.6); −−−, approximate WKB solution given by (3.27)–(3.28) and · · · · · ·, approximate
WKB solution as calculated in § 2.1.3.

B being the beta-function (Abramowitz & Stegun 1972). Equations (3.27)–(3.28) yield
a U-shaped curve, like that plotted with a dashed line in figure 8, whose minimum
provides the instability threshold. The approximation (3.28) does not coincide, even
at leading order, with the result of applying the WKB method (as ω → 0) to the

Mathieu equation (3.5), the main difference being the term proportional to C
1/2
g cos τ

in (3.26); this is not surprising because (3.5) only applies when the oscillation is
monochromatic.

4. Some approximations in the literature
Here we consider two ad hoc approximations already considered in the literature

to elucidate their scope.
As noticed by Kumar (1996) and further pursued by Miles (1999), the numerical

solution of the basic problem used by Kumar & Tuckerman (1994), quoted in the
Appendix, converges so fast that a two-term truncation frequently yields quite good
results. That approximation is given by (A 9) in the Appendix and has been used to
calculate those curves plotted with dashed lines in figure 3. From this figure and other
comparisons not presented here we conclude that the approximation is reasonably
good along the first resonance tongue. Note that the eigenfunctions are increasingly
complex as ω̃ → 0 (§ 2.1.3) and thus this two-mode approximation must fail for
small frequency. Also note that the approximation is better for small Cg , which is
consistent with the fact that in the nearly inviscid limit the eigenfunctions become
monochromatic.

A second (family of) approximation(s) is related to the Mathieu equation, which
is the simplest equation exhibiting parametric instabilities (Bender & Orszag 1978).
There has been two types of such approximations reported.

Beyer & Friedrich (1995) and Müller et al. (1997) derived a non-local Mathieu
equation in the nearly inviscid limit Cg → 0, the non-local term resulting from
the solution in the Stokes boundary layer attached to the bottom of the container.
That equation reduces to (3.4) if the forcing frequency is not too large and only
monochromatic solutions are sought, but it also provides the non-monochromatic
solutions considered in § 3.2.
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Cerda & Tirapegui (1998) instead considered the highly viscous limit and proceeded
as follows. They considered the temporal Laplace transform of (2.3)–(2.6),

(P̃ ∗,W ∗, F̃∗) =

∫ ∞
0

(P̃ ,W , F̃)est̃ dt̃, (4.1)

and eliminated P̃ ∗ and W ∗ from the resulting problem, to obtain after some algebra
an equation of the form

Ψ (s)F̃
∗

+ aω̃2

∫ ∞
0

F̃
∗

cos(ω̃t̃)est̃ dt̃ = 0. (4.2)

Now they observed that for sufficiently large viscosity and fixed forcing frequency
(in our notation, Cg � 1 and ω fixed) the function Ψ is well-approximated by its
second-order Taylor expansion at s = 0, namely Ψ (s) ' Ψ (0) + sΨ ′(0) + s2Ψ ′′(0)/2
over a wide range in s (not just that at small s). This means that the inverse Laplace
transform of (4.2) is approximated by a Mathieu equation. In our notation, this
equation is

B1(k)F̃
′′

+ B2(k)F̃
′
+ [(1− S + Sk2)/C2

g + aω̃2 cos(ω̃t̃)]F̃ = 0, (4.3)

where

B1(k) = (3 sinh 2k − 6k − 4k3) cosh2 k + k2(sinh 2k − 2k)/[k(sinh 2k − 2k)2],

B2(k) = 2k(cosh k + 2k2 + 1)/(sinh 2k − 2k).

}
(4.4)

Before proceeding we note that (4.3) does not reduce to (3.4) as Cg → 0, which means
that (4.3) does not apply as ω � Cg → 0. Observe that (4.3) does not come from any
asymptotic limit; instead it should be seen as a numerical approximation. We have
thoroughly checked (4.3) and have found that it provides (numerically) reasonably
good results over a wide range of the parameter values, whenever ω̃ is not too large.
This is illustrated in figure 3. Finally, we can obtain a second-order approximation
in the application of the WKB method to (4.3) (Bender & Orszag 1978), namely the
following approximation of the marginal instability curve of (4.3):∫ 2π

0

Re (λ̃(τ)) dτ = −ω̃ ln

[
2

∣∣∣∣cos

(
ω̃−1

∫ 2π

0

Im (λ̃(τ)) dτ

)∣∣∣∣]+ · · · (4.5)

as ω̃ → 0, where λ̃ is that root of

B1(k)λ̃
2 + B2(k)λ̃+ [(1− S + Sk2)/C2

g + aω̃2 cos(ω̃t̃ )]F̃ = 0, (4.6)

with the largest real part. With this approximation we calculate the threshold accel-
eration that is plotted with dotted lines in figure 3.

Summarizing, the two-term approximation in (A 9) and that resulting from the
Mathieu equation (4.3) together provide the whole threshold curve, as is apparent in
figure 3.

5. The effect of distant sidewalls
These effects were neglected above, but they can be larger than expected due to

contact line dynamics; they have been estimated at large aspect ratio by Milner
(1991), and are considered below for convenience. In the viscous regime considered
in § 2, the validity of the approximation only requires that the aspect ratio of the



Faraday instability threshold 323

container, L (the ratio of width to depth), be large compared to the non-dimensional
wavelength k, that is

Lk � 1. (5.1)

And the same condition applies in the nearly inviscid limit considered in § 2.1 if the
contact line is either fixed or completely free (i.e. if either the first boundary condition
(1.6) applies or if the second does with D = ∞); this is in accordance with the fact
that the contact line itself produces no dissipation at leading order in these two cases.
But if the second boundary condition (1.6) applies and D is neither too small nor too
large, then contact line dynamics has a more profound effect on viscous dissipation
and thus on the instability threshold calculated in § 3, as we show now. With the
notation in (1.1)–(1.6), the mechanical energy equation is written as

dH/dt = −Φ1 − Φ2 + Φ3,

where H , Φ1, Φ2 and Φ3 are given by

H =

∫
Σ

∫ 0

−1

(|u|2 + w2) dx dy dz +

∫
Σ

[(1− S)f2 + S |∇f|2] dx dy,

Φ1 = 2Cg

∫
Σ

∫ 0

−1

(|∇u|2 + |uz|2 + |∇w|2 + w2
z ) dx dy dz + 4Cg

∫
Σ

u · uz dx dy,

Φ2 = 2SD−1

∫
Γ

f2
t ds = 2SD

∫
Γ

(∇f · n)2 ds, Φ3 = 2aω2 cosωt

∫
Σ

fft dx dy.

H and Φ3 result from mechanical energy and the work due to forced vibration,
respectively. Φ1 accounts for viscous dissipation in the liquid, which results from
dissipation in both the bulk and the Stokes boundary layer, and was accounted for
in (3.5) (or (3.7)); Φ2 comes from dissipation at the contact line. A straightforward
orders-of-magnitude analysis using (3.12) and (3.14) yields

|Φ1| ∼ Cgω2k2L2(1 + k)−1 and |Φ2| ∼ SLmin{D−1ω2, Dk2},
and the effect of viscous dissipation at the contact line can be neglected only if

|Φ2|
|Φ1| ∼

S(1 + k) min{1, D2k2/ω2}
CgDk2L

� 1, (5.2)

or equivalently, only if D is either sufficiently small or large, namely if either

D � ω2CgL/[S(1 + k)] or D � S(1 + k)/(Cgk
2L).

If none of these conditions hold then the effect of contact line dynamics can be of
the same order as (or even large compared to) that of viscous dissipation. This could
be the case in some of the experiments by Bechhoefer et al. (1995) and Christiansen
et al. (1995).

6. Comparison with experiments
Most experiments in large-aspect-ratio containers either deal with the viscous limit

or with the short-wave limit, which are considered now.

6.1. Highly viscous limit

As is frequently the case in fluid mechanics, the high-viscosity limit provides good
results for moderate viscosity. In order to illustrate this we plot in figure 9(a) the
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ρ ν σ h ω∗
Symbol in figure 9(b) (g cm−3) (cm2 s−1) (dyn cm−1) (cm) (Hz) Cg S

4 0.8 0.8 30 0.13 40–80 0.30 0.69
× 0.8 0.8 30 0.15 40–80 0.27 0.63
+ 0.8 0.58 30 0.1 30–70 0.27 0.75

Table 1. Experiments at large viscosity by Lioubashevski et al. (1997).

threshold acceleration for representative values of Cg > 0.3 and S (cf. figure 3c, d ).
Note that for Cg > 0.3 and ω̃ > 10 (or Cg > 0.5 and ω̃ > 5), all curves are quite
close to that obtained for Cg = ∞. This explains the ‘universal scaling’ found by
Lioubashevski et al. (1997), who performed a large number of experiments at high
viscosity and small depth, and showed that the results were fairly independent of
gravity and surface tension. In our notation, these results were all on the same
curve of the plane ac vs. ω̃, in accordance with figure 9(a). In fact, by empirical fit,
Lioubashevski et al. obtained the curve

acω̃
2 = (π/2)[(1− S)C−2

g + 0.059 ω̃2 + 21.46 ω̃0.23], (6.1)

which is plotted with dot-dashed line in figure 9(a, b). This curve yields reasonably
good results in the range 5 < ω̃ < 10, which (as it must) includes the range where
it fitted the experiments by Lioubashevski et al. Note nevertheless that it cannot
(and does not) give good results outside this range; in particular (as expected in a
purely empirical fit) it does not meet the asymptotic behaviour (2.8) for large ω̃. For
illustration we have added in figure 9(b) some experimental results by Lioubashevski
et al. (see table 1 for the physical parameters). Note that Cg ∼ 0.3 and S ∼ 0.7 in
all cases, and that the fit is quite good with both the exact curves and the empirical
approximation (6.1) for Cg = 0.3 and S = 0.7.

6.2. Short-wave limit

Now we consider the experimental results summarized in table 2. These are compared
in figure 9(c) with the results obtained in § 2.2. Note that condition (2.26) applies in
all cases. Most results (except some by Hoffman & Wolf 1974 and Bechhoefer et al.
1995) fit the curve Ŝ = ∞, which suggests that gravity plays no much role here. But a
closer look at the theoretical curves for the different values of Ŝ shows that the effect
of gravity (and surface tension) is as indicated in the last column in table 2. Some
remarks are now in order.

(i) The experimental points are above the theoretical curves in most plots, which
suggests that (despite experimental errors) some additional source of damping could
be present. The effect of the lower plate, which was ignored in the theoretical curves,
could also play a minor role when ω is only moderately large (say ω 6 6).

(ii) Some of the second group of experimental points by Hoffman & Wolf (namely,
those above the curve Ŝ = ∞) were obtained with the container in the inverted
position, which confirms the small role of gravity.

(iii) Kudrolli & Gollub (1996) do not give the surface tension coefficient, which
has been taken from Bechhoefer et al. (1997), because both seem to have used the
same type of silicone oil.

(iv) We have only taken a few from the many experimental points by Wernet et al.
(2001), namely those points in which the wavelength of the excited waves was small
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Experiment [symbol in figure 9c] (g cm−3) (cm2 s−1) (dyn cm−1) (cm) (Hz) Cg × 103 S × 103 ω Ŝ effects

Hoffman & Wolf (1974) [?] 0.9 1.1 10 6 50–170 2.4 0.31 25–84 1.00 V-S-G
Hoffman & Wolf (1974) [×] 0.9 4.3 10 6 50–110 9.4 0.31 25–55 0.16 V
Edwards (1994) [⊕] 1.22 1.02 67.6 0.29 51–100 160 400 4.3–8.4 4.58 V-S(-G)
Bechhoefer et al. (1995) [4] 0.86 1.24 28.9 1.0 30–75 39 33 6.0–15 2.46 V-S(-G)
Bechhoefer et al. (1995) [O] 0.84 0.25 26.2 1.0 54–137 7.9 31 11–27 19.7 V-S-G
Kudrolli & Gollub (1996) [+] 0.85 0.1 27 0.3 42–178 16.6 265 3.9–16 62.6 V-S-(G)
Kudrolli & Gollub (1996) [�] 0.85 0.5 27 0.3 42–57 83 265 4.0–5.4 7.27 V-S(-G)
Kudrolli & Gollub (1996) [⊗] 0.85 1 27 0.3 47–58 166 265 4.5–5.3 2.90 V-S(-G)
Lioubashevski et al. (1997) [◦] 0.8 0.48 30 0.21 66–80 117 465 4.5–5.3 8.16 V-S
Lioubashevski et al. (1997) [•] 0.8 0.41 30 0.25 52–102 82.5 380 4.1–8.1 10.6 V-S(-G)
Wernet et al. (2001) [�] ∼ 0.94 ∼ 0.75 ∼ 19.9 0.3 80–140 ∼ 140 ∼ 193 7.9–14 ∼ 2.7 V-S

Table 2. Experiments in deep containers. In the last column we indicate what effects (V = viscous, G = gravitational, S = surface tension) play a role
in each experiment; G between parentheses indicates that gravity plays a small role. The data for Edwards (1994) are unpublished and are taken from
Kumar & Tuckerman (1994), Kumar (1996) and Cerda & Tirapegui (1998).
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Figure 9. Comparison with experiments. (a) Joint plot of the right-hand sides of figure 3(c, d ) and
their counterparts for Cg = 0.3 and S = 0.7 (——), and the corresponding empirical approximation
(6.1) (−·−·−); the values of Cg and S associated with each empirical curve are readily guessed taking
into account that acω̃

2 increases as (1− S)/C2
g increases. (b) Comparison of the exact curves (—–)

and the empirical approximation (6.1) (− · − · −) for Cg = 0.3 and S = 0.7 with some experiments
by Lioubashevski et al. (1997), see table 1. (c) A plot of some of the curves in figure 6(a) and some
experimental results (see table 2).

compared with the container depth. The parameters ρ, ν and σ vary in small ranges
for these experiments, and we only give an intermediate value in each case.

7. Conclusions
We have considered the linear problem giving the instability threshold amplitude,

ac, for the appearance of Faraday waves in large-aspect-ratio containers. We have
identified all distinguished limits, which are listed in § 1. These results allow us
to explain the shape of the curve acω

2 vs. ω, depending on the non-dimensional
parameters Cg , which is a measure of viscous effects (compared to the combined
effect of gravity and surface tension) and S , which is the ratio of surface tension
to its combined effect with gravity. These curves always show the same asymptotic
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behaviours for small and large frequency. A sequence of alternating harmonic–sub-
harmonic segments appears for small frequency, as ω � 1 − S + Cg; the practical
interest of this limit is limited because it involves a quite large forcing amplitude. As

ω � Cg and 1 − S + Sω/Cg � ω3/2C
1/2
g viscous effects dominate both gravity and

surface tension and we have ac(ω/Cg)
1/2 ' 1.672. Two cases can be distinguished for

the intermediate part of the curve:
In the basic viscous case, considered in § 2.1, Cg is at least of order unity and there

is only one intermediate region, obtained as ω/Cg ∼ 1. As a practical recipe for this
limit, we have found in § 6.1 that as Cg > 0.5 and ω/Cg > 5 (for arbitrary S) all curves
acω

2/C2
g vs. ω/Cg approach that curve obtained for Cg = ∞. This wide validity of

the highly viscous limit explained some observations by Lioubashevski et al. (1995).
In the nearly inviscid case, as Cg � 1, the curve (see figure 7b, c) shows several

distinguished regions in addition to the two considered above. As ω ∼ Cg and 1 −
S + Sω/Cg � ω3/2C

1/2
g (in figure 7b, ω1 . ω . ω2, where ω1 = 0.1 for S = 0, 0.5,

ω1 = 0.5 for S = 1, and ω2 = 5 for S = 0, ω2 = 100 for S = 0.5, 1), viscous effects
are weak except in boundary layers and ac can be approximated in closed form.

As 1 − S + Sω/Cg ∼ ω3/2C
1/2
g viscous effects cannot be neglected, even in a first

approximation, because they are of the same order as the combined effect of gravity
and surface tension; this corresponds to the transition from small to dominant viscous
effects, and yield the change in slope at ω ∼ ω2 in figure 7(b). If 1− S � Cg (S = 0
and 0.5 in figure 7b) there are no additional regions but if 1− S = O(Cg) (S = 1 in
figure 7b) there is an additional viscous region, as ω ∼ Cg (ω ∼ ω1, in figure 7b) where
the eigenfunction at threshold exhibits a long wavelength (compared to depth), which
is intermediate between the nearly inviscid region and the harmonic–sub-harmonic
sequence. Most experiments in the literature for small Cg correspond to the short-
wave part of the curve and were compared in figure 9(c) with the results obtained in
§ 2.2. We have elucidated the roles of gravity and surface tension in each experiment.

In addition we have thoroughly checked two approximations in the literature,
introduced by Kumar (1996) and Cerda & Tirapegui (1998), which together describe
reasonably well the threshold acceleration for all values of the parameters. The former
yields good results on the first resonance tongue, in most of the curve acω

2 vs. ω,
except at small ω. And the latter applies at small frequency, so that the scope of both
approximations overlaps and covers the whole curve.

The results above show that Cg and S are useful parameters for the description and
understanding of the several regimes. We showed that there is a variety of essentially
different regimes, some of which have not been explored experimentally. We have
tried to obtain a complete description of all regimes and the scope of each. We
hope this will help as a prerequisite to understanding weakly nonlinear dynamics of
Faraday waves, which is a major open problem.

This research was partially supported by DGI and NASA, under Grants BFM2001-
2363 and NAG3-2152. The authors are indebted to Dr Carlos Martel for some useful
discussions.

Appendix. Numerical calculation of the marginal instability curves
For the sake of brevity we only give complete expressions for the basic limit con-

sidered in § 2.1.1, and for convenience we consider the non-dimensional equations
(2.3)–(2.6). The Floquet exponents are denoted as λ̃ and defined such that there
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is a non-zero solution of (2.3)–(2.6) such that (W (t̃ ), P̃ (t̃ ), F̃(t̃ )) exp(−λ̃t̃ ) is peri-
odic, of period 2π/ω̃. The Fourier expansion of this periodic solution will converge
exponentially. Accordingly, as in Kumar & Tuckerman (1994), if the expansion

(W (t̃ ), P̃ (t̃ ), F̃(t̃ )) = exp(λ̃t̃ )

n=∞∑
n=−∞

(Wn, P̃n, F̃n) exp(inω̃t̃ ) (A 1)

is substituted into (1.9)–(1.11) then several equations and boundary conditions result
that allow a unique determination of Wn and P̃n in terms of F̃n. A further substitution
into (1.12) yields

2AnF̃n = aω̃2(F̃n−1 + F̃n+1), (A 2)

where

An =
[(q2

n + k2)2 + 4k4]qn − [(q2
n + k2)2 + 4q2

nk
2]k tanh qn tanh k

k(qn tanh k − k tanh qn)

− 4qnk(q
2
n + k2)

qn cosh qn sinh k − k sinh qn cosh k
+

1− S + Sk2

C2
g

,

qn = (k2 + λ̃+ inω̃)1/2,


(A 3)

if λ̃ + inω̃ 6= 0, and A0 = (1 − S + Sk2)/C2
g if λ̃ = 0. Here we are assuming that

the real and imaginary parts of the Floquet exponent satisfy Reλ̃ + k2 > 0 and
0 6 Imλ̃ 6 ω̃/2. Now, the Floquet exponents are readily calculated by imposing that
the system (A 2) has a non-trivial solution, i.e. after truncation, by imposing that the
associated tridiagonal matrix is singular. This condition can be written in terms of
a continued fraction (Chen & Viñals 1997; Miles 1999). But that condition is also
imposed quite effectively by solving iteratively the tridiagonal system (A 2) as follows.
Split the system (A 2) into the sub-systems corresponding to n positive and negative,
and the equation corresponding to n = 0, and rewrite these three problems as

2A±nf±n−1 = aω̃2(1 + f±n−1f
±
n ) if n > 1, (A 4)

2A0 = aω̃2(f+
0 + f−0 ), (A 5)

in terms of the new variables

f±n = F̃±(n+1)/F̃±n. (A 6)

Since AN = −ω̃2N2/(k tanh k) + O(N)→∞ as n→ ±∞, the expression

f±N = aω̃2/(2A±(N+1)), (A 7)

is exact up to a factor 1 +O(|f±N |2) as N →∞. Here we are disregarding the spurious

behaviour f±N ∼ 2A±N/(ω̃2a). Now, f±1 , . . . , f
±
N are uniquely determined by (A 4) and

(A 7). And substitution of f±0 into (A 5) provides the characteristic equation to calculate

the Floquet exponent λ̃. The system (A 4) is further simplified in two cases

f−n = f̄
+

n if λ̃ = 0, f−n+1 = f̄
+

n and |f−0 | = 1 if λ̃ = iω̃/2, (A 8)

as is readily seen.
For convenience we consider in particular a two-term truncation in the sub-

harmonic case. From (A 5), (A 7) and (A 8), we obtain 2A0 = aω̃2(f+
0 + f−0 ), f+

0 =
aω̃2/(2A1) and |f−0 | = 1, which lead to the following approximation of the threshold
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amplitude:

a2
cω̃

4 = 2[A0A1 + c.c.+ |A1|2 −
√

(A0A1 + c.c.+ |A1|2)2 − 4|A0|2|A1|2], (A 9)

where A0 and A1 are given by (A 3), with λ̃ = iω̃/2. This approximation coincides
with that by Kumar (1996) modulo notation differences.

The problems (2.11)–(2.13), (2.29)–(2.32) and (2.29)–(2.31), (2.35) are solved in a
completely similar way. Equations (A 4)–(A 8) remain unchanged, while (A 2) must be
replaced by the following expressions, which are obtained by substituting the scalings
(2.2), (2.10) and (2.34) into (A 1)–(A 2), (A 4)–(A 7) and neglecting higher-order terms.
For (2.11)–(2.13) we have

An = q̃5
n/[(γ + 1)k̃2(q̃n − tanh q̃n)] + γ + (γ + 1)k̃2, (A 10)

where q̃n = (λ̃+ inω̃)1/2; for (2.29)–(2.32) we obtain

An = (q̂2
n + k̂2)2/k̂ − 4k̂2q̂n, q̂n = (k̂2 + λ̂+ inω̂)1/2; (A 11)

and for (2.29)–(2.31) and (2.35) we obtain

An = (q̂2
n + k̂2)2/k̂ − 4k̂2q̂n + (1 + Ŝ )−3ω̂−3/2 + Ŝ k̂2(1 + Ŝ )−1ω̂−1/2, (A 12)

with q̂n as defined in (A 11).
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